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The mass difference between various baryons is attributed to the presence of bosons weakly coupled to a 
primary baryon. As an example, the case of SA is treated assuming the 2—A parity to be even. An eigen­
value condition derived by Albright, Blankenbecler, and Goldberger, using the N/D method, is rederived 
simply. This derivation not only clarifies the assumptions, but makes the algebraic handling of the problem 
very simple. 

1. INTRODUCTION 

STRONG interactions may have their origin in weak 
interactions; several attempts have been made 

recently to examine this hypothesis.1*2 Thirring1 has 
considered the pion as a bound state of a nucleon-anti-
nucleon pair (as in the Fermi-Yang model3). By a 
beautiful exercise of analytical skill, he has solved the 
two-fermion equation4 in the limit of large binding 
energy and produced a pion whose binding force is 
entirely due to the exchange of a massive vector boson 
interacting weakly with the nucleons. In this calcula­
tion, crossing symmetry is violated because the nature 
of the approximation gives rise to a pion interacting 
much more strongly with the nucleon than do the 
vector mesons themselves. To remedy this defect, 
Albright, Blankenbecler, and Goldberger2 have done a 
dispersion-theoretic calculation in which the vector 
boson and the pion are treated on the same footing. 

The present paper might be considered as a logical 
continuation of the work of Albright et al.2 There have 
been many symmetry schemes of elementary particles 
which start out with baryons of equal mass (a de­
generate baryon) and break down the symmetries to 
account for the observed mass differences. The break­
down of the symmetry is attributed to pions and kaons. 
In this work, we attribute the mass differences between 
various baryons to the presence of vector bosons. We 
think of the baryons as bound states of a nucleon and a 
pion or a K meson in the presence of weakly interacting 
vector bosons. As a simple example, we consider the 
coupled system of a A particle and a pion to produce a 
2 particle. 

In the next section, we derive two eigenvalue equa­
tions connecting masses of the particles involved in 
the two basic vertices and the vertex values themselves, 
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that is, the coupling constants. This derivation does 
not make use of the N/D method and the special 
asymptotic behavior of the vertex function assumed by 
Albright et al. Thus, it makes the construction of the 
matrices M, H, and Q of reference 2 unnecessary. In 
Sees. 3 and 4, we treat the two cases: the weakly 
coupled boson as a pseudoscalar particle, and as a 
vector particle. The last section contains numerical 
results and discussion. 

2. EIGENVALUE CONDITIONS 

We define the two vertex functions G and H: 

and 
G=(0\MAVK2E1ko/MY'\ 

H={0\h\A7r}(2Eiqo/My'\ 

(la) 

(lb) 

where the 4-momentum (0,^) of the 2 particle is off 
the mass shell, / s is the current operator for the 2J 
particle. (p,E), (&,&o), and (q,qo) are the 4-momenta 
and energy of the A particle, the V meson, and the pion. 
Ms, Af, tn, and p. are the masses of 5J, A, V, and w. We 
assume that the V meson has isotopic spin unity and 
that parity is conserved in all the interactions we 
consider. The subscripts 1 and 2 refer to the vertices 
involving V and w mesons, respectively. We assume 
in the following sections that the 2-A parity is even 
and that the S T S coupling is small, as indicated by 
analyses of the recent experimental data.5 

We approximate the unitarity conditions for the 
vertex functions G and H by considering only one-
meson and one-baryon intermediate states (Fig. 1). In 
this approximation, the unitarity conditions can be 
written as 

ImG=G*puMu+H*pnM2i, (2a) 

ImH= G*puM n+H*p2<iM 22, (2b) 

A 

v 

A 
IT 

A 
7T 

FIG. 1. Diagrammatic representation of the approximation 
to the unitarity condition. 

5 R. H. Dalitz, in Proceedings of the 1962 Annual International 
Conference on High-Energy Physics (CERN, Geneva, 1962). 
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where g is a diagonal matrix containing phase-space 
factors and M, the scattering matrix. 

The dispersion relations for the vertex functions are 

G(W2)-

H(W2)-

T J 

l r 

IT J 

dW'2 

dW'2 

ImG(W'2) 

Wf2-W2-u 

ImH(W'2) 

W'2-W2-ie 

(3a) 

(3b) 

The corresponding lower limits are to be inserted. 
Now we assume that, because of the weakness of the 

F-meson coupling (and its presumably heavy mass6), 
the pion intermediate state predominates and the 
F-meson intermediate state contribution can be neg­
lected. Then, from (2) and (3) we get 

G{W2)=- f 
T J ( 

1 r™ 
H(W2) = - / 

X J (M4-u)s 

H*pnM%x 
dW'2-

H*pmMn 
dW12-

(4a) 

(4b) 

On the mass-shell of the 2 particle we have 

i3r*p22M2i 1 r°° 
*. = - / 

1 f 
T J ( 

dW'2 

W*-Mf-u 

H*pnMn 

Defining: 

dW'2-

H*p22M2i 
j . 2 = = / dW'2 

M^—it 
(5) 

With this expression for 7»2, (6a) is exactly the same as 
the Eq. (2.25) obtained by Albright et al2 In addition, 
we have here (6b), which implies that, if the weak V 
meson is pseudoscalar, in this approximation, it should 
have the same mass as the pion. The comparison of the 
two methods of derivation indicates that the assumption 
about the asymptotic behavior of the vertex function 
in reference 2 is equivalent to neglecting the F-meson 
intermediate states in the unitarity condition. 

Because of the nature of the present derivation of 
(6), we do not need to construct the H, M, and Q 
matrices of reference 2 and the vector F-meson case 
does not become any more difficult than the case of a 
pseudoscalar or scalar F meson. 

Some remarks about Eqs. (6) are in order. If we take 
M and p. as known and gV} m, and Ms as unknown 
quantities, we can, in principle, solve the two equations 
for one of the latter, say Jf 2, and get the other two, 
m and gT, as a function of each other. The validity of 
our approximations, however, is much greater for Eq. 
(6a) than for (6b), so that a complete solution of the 
system of equations is not attempted here. This point 
is more fully discussed in the last section. 

3. PSEUDOSCALAR V MESON 
Assuming the A-S parity to be even, the invariant 

expression for G in the center-of-mass system of the 
F-A state is 

G=-i{Gl+G2[iy (P+k)+MH}y&(p), 
= ~-RG+(l+74)+G„(l~74)]76«(^)J 

with 
G±=Gi+(M2^W)G2j 

whence, in two-component notation 

with gi=gv and g2=gr, we have 

gT
2/^r=2x/Ji2> 

and 

(6a) 

gw*/4w=2ir/Ia. (6b) 

If we assume the energy independence of H*(W'2) 
inside the integral in (5) and setting H*(W'2) = gv and 
replacing M (PF'2) by the first Born approximation 
B{W'2)y Eq. (5) becomes 

/« 
Sw 8TT r 

gig*J(M+tf* 
dW'2 

Sw r fP22(W] 
— / dwf\ 
gigrJiM+ri L W'-

_P22(W'2)B2i(W'2) 

W'2-W2-ie 

P22(W)B2i(W) 

W-ie 

W'+W+ie ie J 
(7) 

»T. D. Lee and C. N. Yang, Phys. Rev. 119, 1410 (1960). 

G+vk "I 
G=-il2M(E1+M)2-w\ * 

L-G_(JSi+Jf)J 
(8) 

The notation is the same as in reference 2. For the 
A+7r —> A+ F reaction, we have 

Ti2=u(p%A12-hiy (q+WBMp), 

4wW 

M 
X1'*[ti+t2<r-k<r-q']X2 (°) 

where 

\_(W+My-fJi*[(W+My-m*Ji* 
h= 

/ * = -

ltorW* 

XlAli+(W-M)Bli2, 

Kw-My-n^Kw-My-m^112 

l(nrW2 

XL-A12+(W+M)B12]. 
Then the (1—) and (0+) partial waves are given by 

h-=hl+h°' (io) 



BARYON MASS S P L I T T I N G AND WEAK AND S T R O N G C O U P L I N G S 2757 

where Ul are coefficients in the partial-wave expansion Projecting out h1 and t2° from Eq. (14) and combining 
of U, 

fc»Ei(2H-i)tfW-«). 

We see that G+ on the mass shell is just gv. Hence, we 
are interested in the dispersion relation for G+. The 
unitarity condition (neglecting F-meson intermediate w e r e 

states) is 

lmG^H+*ql(E2-M)/(E1-M)J^l.i 

which gives 

P22Mn~ql(E2-M)/(E1-M)Jin„1. (11) 

We approximate /i__ by the (1 — ) partial-wave Born 
amplitude for N+V -»N+w. The interaction La-
grangian is 

Li—igv$rY**'M'v--igr$'rYt'C'i*4'iL- (12) 

The Born approximation for T2\ is given by 

(11) with (7), we get 

rw aw 
hi=MJ —q(W)Jp8(W), 

J(M+u) W 

dW 
(15a) 

2 A / WEi\-\ 
M s - A + J Ul-ax) 

2A 

W*-Mf 

2 
-Qi*-A*)\l+(W*-MJ)(l VI 

(W*-MJ) L \ MJ J 
2A 1 

T2l*=-gvg*u{p i iy (p+k)+M2 
with 

Ms W*-Mf 
(15b) 

MJ-W* 

Hence, 

iy {p—q')+Mi 

{p-q'Y+Mf : > 
(P). (13) 

* i = -

h=-

X\a(W-Mx)-P(W+M2-2201, (14a) 

( E i - A O ^ ^ - M ) 1 ' 2 

1 / a + 6 \ 
* = - l n ( ), 

2b \a-bJ 

A=3f s-Af, (15c) 

a=2£2fco-»*2+2AM2-A2, 

6=2% 

4. VECTOR K MESON 

The vertex function G can be written as 

G= -i{G1+G2[iy (p+k)+Mi\)yfr(p) 
+ {Gi+GJ[iy (p+k)+Ms]}Z-pu(p), (16) 

with 

and 

X[a(W+Mz)~fi(W— Mx+2M)1 (14b) where £„ is the polarization four-vector of the vector 
V meson and satisfies the equation 

*=g,g*/(MT?-W*), ^ = 0 _ 

In the two-component notation Eq. (16) takes the form: P=g*gJlMf+(p-q')-} /\12 

G=[2J/(£1+M)]-1 '2 

L{[F_+ (£!+Af2)G_]C-k+ (Ex+Jlf j)G_fw eXk}<F-kJ 
|Xi, (17) 

with 

and 

G±=Gi+(ilfsTW0G2, 
The unitarity condition in the approximation in which 
we are working gives 

/E2-M\V* 

F_= (G_+PrG+0(£i2-Ms2)/(W-£i). 

In the two-component notation, Tu can be written as 

T12 = i Xx'ipur- Z*+h(i«- kX e)o-4 

+to-k?-k+t0-4?-li>]fa. (18) 

ImG+=H+*q( ) ( t f - t f - J t f + i t f ) , (19) 
\EX-MJ 

Ul being the coefficients in the partial-wave expansions 
of ti& of Eq. (18). The interaction Lagrangian in this 
case is 

JLJ= —gv^niy^' f^A—g^tfy**' $*$A, (20) 

file:///a-bJ
file:///Ex-MJ
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and the Born amplitude is given by 

-iy(p+k)+Mz riy(p+k)+M2 
T2i=gvi*u(p')\ r t 

TABLE I. Calculation of g2/4x with various cutoff 
energies and various values of mass m. 

iyq-\-(Mz—M)~\ 
-y-z-—: \Y**(P). (21) 

Putting the above expression in the form of Eq. (18), 
we get 

1 
h~-

STW 
l(El+M)(E2+M)2m 

X[a(W-Mx)+p(W+Mx-2M)], 

h= £(E1-M)(E2-M)J'2 

SirW 

Xla(W-M2)+P(W-M2+2M)']9 

-[ (Ei-M) {E2~ M)J**2 (E2+M)p, STW 

1 (22) 
<4= l(E1+M)(E2+M)J,22(E2-M)^ 

1 Et-M 
*s= l(El+M)(E2+M)J^ 

SwW W-Ex 

X{a(W-Mz)+p(2E2-W-2M+Mj;)~2, 

1 1 
h= [_{Ei-M){E2~M)y 

SwW W-EX 

X { - (W+M)(W+M?)a-l3l2E2(E1+M) 

+tn2+(W+M)(M-M2)2). 

Projecting the relevant angular momentum parts from 
Eqs. (22) and combining (19) with (7), we get 

where 

J V — J Tt 

J(A/+M) 

4 ( ^ - A 2 ) 

q(W) 
dW- J,(W), 

W 
a 

K> (24) 

a, b, and x being given by (15c). 

5. NUMERICAL CALCULATIONS AND DISCUSSION 

Now, using Eq. (6b), we calculate g<*2/4a for various 
mass values of m, assuming Mx, M, and fx as known. 
Because we have used the Born approximation and 
neglected higher mass intermediate states, we calculate 
the values of the integral in In with various cutoff 
values to compare with the one obtained with infinite 
limit (Table I). 

Type of V meson 

Pseudoscalar 

Vector 

Mass m in 
BeV 

0.14 
0.34 
0.74 
1.14 
0.14 
0.34 
0.74 
1.14 

gr
2/4a- with cutoff at: 

2M 

50.1 
-46 .8 
-19.8 
-15.2 
-53.5 

46.7 
19.6 
15.0 

3M oo 

26.2 5.6 
-351.0 7.3 
-32 .0 9.1 
-22.1 10.3 
-34.1 - 6.2 
349.0 - 8.0 
31.8 - 9.8 
21.9 -11.1 

In the pseudoscalar case, we see that the coupling 
constant is positive and increases with increasing V-
particle mass for infinite cutoff. This is the opposite of 
the situation in reference 2. From an examination of the 
expression (15) and the corresponding expression in 
reference 2, we see that this difference in sign can be 
traced back to the differences in the isotopic spins of the 
participating particles.7 

When the V meson is vector, we see that the values 
of g2/4x with infinite limit decrease as m is increased. 
Comparison with reference 2 again shows that the values 
we have are opposite in sign, the reason being the same 
as in the case of the pseudoscalar V meson. We can get 
positive values for g2/4?r with a high cutoff value for 
the integral and with a higher value of m (see Table I). 

As mentioned in Sec. 2, when the V meson is pseudo-
scalar, it should have the same mass as the pion. This 
follows from the identical functional dependence in 
Eqs. (6a) and (6b) when m is equal to fx. Because of 
the nature of the approximations we have used, the 
functional dependence in (6b) should not be taken 
seriously. The Born approximation could well be valid 
in the case of T2h since one of the particles is weakly 
coupled to the A particle. Thus, although we have two 
eigenvalue conditions and in principle we can get g2/4w 
as a function of w, the nature of the approximation we 
have made, especially in deriving I22 in (6b), does not 
permit us to get a reliable functional dependence. We 
could do better by giving a dispersion-theoretic treat­
ment to the A-T scattering amplitude, using the 
Mandelstam representation. 

We see from the Table I that for the given value of 
Ms there exists a V meson mass with an appropriate 
cutoff value for the integral which gives a reasonable 
value for the coupling constant gr. Thus the results, 
though not conclusive, make very plausible the idea 
that the mass difference between baryons may be due 
to the presence of various vector mesons. 
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